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In this paper some recurrence relations satisfied by single

and product moments of upper record values from size-

biased Pareto distribution(S-BPD) are presented. Further a relation

between moments of size-biased Pareto distribution and upper record

values from size-biased Pareto distribution is established. Maximum

likelihood estimators (MLE) of S-BPD are also presented.  Confidence

intervals and record quantile from size-biased Pareto distribution, based

on upper record values have also been developed.
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1.INTRODUCTION
Record values appear in many statistical

applications. Record values involve in many real life

applications including data relating to sports, climate,

economics, students grade sheets, purchase order, memos

and any other type of documents. Chandler (1952)

formulated the theory of record values arising from a

sequence of independently identically distributed

continuous random variables and has now spread in

various directions. Balakrishnan et al. (1995) obtained the

recurrence relations for moments of record values for

Gumbel distribution. Balakrishnan and Chan (1998)

discussed the associated inference for the normal record

values. Sultan et al. (2007) introduced the estimation and

prediction from gamma distribution based on record

values. Khan and Zia (2009) established recurrence

relation of single and product moment from Gompertz

distribution and they also presented a characterization.

The recurrence relations for the single and double

moments of record values can be used to calculate the

different moments for any order and sample size in a

simple reverting manner. The recurrence relations reduce

the round-off error for calculating the moments compare

with the numerical integration techniques. When we use

the recurrence relations to calculate the moments, we

need only few initial moments to be numerically calculated.

Bashir and Ahmad (2014) developed record values from

the inverse Gaussian distribution (IGD) including its

various properties. They developed a limiting theorem

and a recurrence relation of record values from the IGD.

Bashir and Akhtar (2014) introduced the record values

from the size-biased student’s t distribution. They

developed some properties of the record values from

student’s t distribution including some reliability measures.
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Let      .21 nUUU XXX   be the upper

record, Ahsanullah (1995) gave the following pdf of

upper record values  nUX  is
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The joint pdf of  iUX  and  jUX  is
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Weighted distributions used when the recorded

observations are not generated randomly. Moment

distributions have a number of applications in forestry, in

observational studies of human life, environment, insect,

plant etc. Length-biased distributions have been used as

moment distributions in reliability perspective. Size biased

distributions are special case of the weighted distributions

(Moment Distributions). Such distributions rise certainly

in practice when observations from a sample are recorded

with unequal probability. The weighted distributions arise

when the observations generated from a stochastic

process, are recorded according to some weighted

function. When the weight function depends on the

lengths of the items of concern then the subsequent

distribution is called length biased.

Let the random variable X  have

distribution  ;f x  , with unknown parameter ,

and then the corresponding moment distribution is of
the form

     
   ,

;
;

XwE

xfXw
xg


          (1.3)

where  Xw  is a non-negative weight function such

that   XwE  exists.

When the weight function has the form,   mxXw 
then such distributions are named as size-biased

distributions of order m  and are written as [Patil and

Ord, (1976); Patil(1981); Mahfoud and Patil, (1982)]:

   
m

m xfx
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; ,            (1.4)

where m  is the thm  raw moment of  ;f x  .

When 1 2m or , these special cases are termed as

length-biased or size-biased distribution and area-biased

distribution, respectively. Patil and Rao (1978) observed

some general models leading to weighteddistributions with

weight functions not essentially limited by unity. The

results were useful to the analysis of data relating to

human populations and wildlife management. Patil (2002)

provided detailed discussion on weighted distribution in

the context of size-biased and length-biased distributions

and their applications. Mir and Ahmad (2009) presented

some size-biased probability distributions and their

generalizations. These set of distributions offer a linking

approach for the problems where the observations fall in

the non-experimental, non- replicated, and nonrandom

categories. They presented some of the possible

applications of size- biased distribution theory to some

real life data. The sized-biased Pareto distribution was

introduced by Dara and Ahmad (2011). The probability

density function of size-biased Pareto distribution is

    .,0,01 1   xxxf  

2. RECURRENCE RELATIONS FOR
SINGLE AND PRODUCT MOMENTS
The cdf of size-biased Pareto distribution (S-BPD) is

  111   xxF .                 (2.1)

The relation between pdf and cdf of size-biased Pareto

distribution (S-BPD) is
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The relation (2.2) will be used to derive some simple

recurrence relations for single and product moments of

upper record values from S-BPD.

Let      .21 nUUU XXX   be the upper record

values from the size-biased Pareto distribution. Then the

pdf of upper record value from S-BPD is

          .,0,1ln
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(2.3)
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(2.3)

The joint pdf of  iUX  and  jUX from the S-BPD
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Theorem 1: For 1n  and ,.....3,2,1r
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Proof: From (2.4), consider for  and
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where the last but one step follows by the integration by

parts. The recurrence relation in equation (2.5) is obtained

by rewriting the above equation.

Theorem 2: For 2 ij  and ,......3,2,1, sr
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and for 1 ij
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Proof: From equation (2.5)
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Integrating by parts, we get
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Substituting the expression of  x in equation
(2.8) and simplifying the resulting equations, we
obtain
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(2.9)
The recurrence relations in (2.6) and (2.7) are
derived by rewriting the equation (2.9).

2.1.1 Relation between rth Moments:-

If      .21 nUUU XXX   be the upper

record values from the S-BPD with pdf
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and the size-biased Pareto distribution with pdf in
(1.3), then a relation between rth moments of size-
biased Pareto distribution and upper record values
from S-BPD pdf is exists as

 
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. (2.11)
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Where, r  are the rth moments of size-biased

Pareto distribution and  nr  are the rth moments

of upper record from S-BPD.
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From this relationship we can derive moments of
upper record values from the S-BPD using the rth
moments of parent size-biased Pareto distribution.

3. MAXIMUM LIKELIHOOD
ESTIMATION
According to Ahsanullah and Houchens (1989), let

     .21 nUUU XXX   be the upper

record values from the size-biased Pareto

distribution, let us denote  iUX by

.,....,2,1, niX i  . Considering the pdf of nth

upper record value in (2.3), where  .f is given by

(1.5), and  .F is the corresponding cdf. Then
likelihood function in this case is
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Clearly, ̂ is distributed as size-biased Pareto
distribution

Therefore,
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4. CONFIDENCE INTERVALS
Let  nUX  and  nLX  be, respectively, the nth upper and

lower record statistics from a family with cdf  .F . Then

 g1100 % confidence interval for the upper record

values and lower record values are given by Teimouri and

Gupta (2012).
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The  g1100 % confidence intervals for the
given upper record values from the S-BPD by using
(4.1)
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Now by using (4.2) we obtain the  g1100 % confidence

intervals for the lower record values from size-biased
Pareto distribution,
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ln ,

    111ln yGP n .

       








    1

1
11

1
1 21exp1,2exp1 gGgG nn

. (4.4)

where, .10  g

4.1. Record Quantile:-
Teimouri and Gupta (2012) derived pth quantile

for 10  p of nth upper and lower record
statistics respectively, is given by

       pGFpq nnU
11 exp1   . (4.5)

       pGFpq nnL   1exp 11 . (4.6)

Now by using (4.5) and (4.6) , we obtain the upper
and lower record quantile for the size-biased Pareto
distribution, respectively

          1

1
1exp pGpq nnU . (4.7)

           1

1
1 1exp1 pGpq nnL . (4.8)

where 10  p .

5. CONCLUSION
In this paper some recurrence relations for

single and product moments of record values from the

size-biased Pareto distribution have been established. A

relation between moments of size-biased Pareto

distribution and size-biased Pareto upper record value

distribution has been derived. By using this relation,

moments of upper record values from size-biased Pareto

distribution can be determined. Confidence intervals and

record quantile for the upper record values from size-

biased Pareto distribution have been introduced. Similar

results for Weibull distribution have been obtained by

Teimouri and Gupta (2012). Maximum likelihood

estimators of the parameters of size-biased Pareto

distribution from upper record values are developed.

Further mean and MSE of MLE parameter of size-biased

Pareto distribution are also derived.
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