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ABSTRACT

We propose a new measure of reliability, called the cumulative mean intervals, that assesses the mean behaviour
of a process by computing the probability that the cumulative sample mean will remain below its long-term sample
mean with a given tolerance over a period of time. We further derive a lower bound for the measure when the
underlying data is independent and identically distributed with a normal distribution. This deduction provides a
preliminary basts for parallel extensions to the two limiting case when we compute the probability that the sample
mean stays within a given distance from the true mean with no assumptions made on independence and normality.
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1. INTRODUCTION

In this paper, we present a new measure called cumulative
mean intervals, that pro- duces more general information on
the evolution of the system’s mean performance compared to
the traditional confidence interval. We present a method for
calculating the probability that the sample mean of a time
series stays below its true mean on one side, with a given
tolerance over a given period of time, We further consider the
long-term mean as the sample mean calculated after a long
period of time. Givena time series Y for i=1,2,..., we define
the cumulative mean intervals (CMI) measure for the one-
sided case as:
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where p is the true mean, kis some initial sample size, and &
is a permissible tolerance. We distinguish the Cumulative Mean
Interval (CMI) from the Cumulative Mean Bounds (CMB)
discussed under [6] which is the probability that the sample
mean stays within a given absolute distance & from g onboth
sides. In this paper, we derive CMI for a large sample size
n
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for some 1= &k < m The parameter m denotes the
number of samples used to calcu- late a long-term
mean and (2) is the probability that the sample
mean stays below the long-term mean_ with allowed
tolerance O above the mean, after an initial sam- ple
size & The expression of (1) 1s the limit of (2) as mr
—— oo and it defines the probability that the sample
mean remains below its true mean w  with
permissible tolerance distance &, after an inifial
sample size & In this paper, we assume that the
underlying time series ¥, 7= 1 consists of data that
are independent and identically distributed (iid)
normal, and ongoing work considers the general
case when the data meet the assumptions of a
functional central limit theorem (FCLT). which
allow for dependence and non-normality.

We evaluuate the expression in (2) by structuring
a time series od data as a stan- dardized which under
some conditions converges to a Brownian Bridge in
the limit. When the data is i.i.d. normal, we will show
that the points of a standardized time series have the
same joint distribution as the same time points of a
standard Brow- nian bridge. We leverage boundary-
crossing probabilities of Brownian Bridges to derive a
lower bound for the values of CMI defined above. The
lower bound only occurs because we use a continuous
Brownian brigde process for the required calcu-
lations,rather than discrete realizations of a standardized
time series. The proposed technique is formulated in a
spirit similar and motivated by mean bounds discussed
under [6].

The layout of this report is as follows; Section 2
provides background on standardized time series and
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derives the joint distribution of points in a standardized

time series when the data are i.i.d. normal. We construct L’“f ( 1 Zm Z \mt] y Y;)

the measure CMI in section 3 and section 4 providesa X (1} — : L’"" t € [0,1].
proof of the main result for the derivation of CMI. a ﬁ

Section 5 presents our conclusions. 3)

2. PRELIMINARIES

In this section, we establish the background needed [4] shows that under the assumptions of a FCLT.
to derive CMI. The work of [5] establishes the quality
X(f) converges weekly to B(f) as m — x where

of this bound and derives the limiting case in (1). The ; g 2
method of standardized time series was introduced in  B(f 15 a standard Brownian bridge over r€ [0. 1]. In

[4] to develop interval estimators for the mean x using ~ OTder to use properties of Brownian bridges applied
data Y, ..., Y,. Weassume a known value of the variance ~ to standardized time series. we require the following
&, for which straight forward estimators exist under  result.

i.i.d. normal case. A standardized time series is defined

in [4] as;

Proposition 1. For i.i.d. normal data, the points of a X(L),i = 1,..m of a
standardized time series have the same joint distribution as the corresponding points
B(L),i = 1,..m of a standard Brownian bridge, which is Gaussian with mean zero

4 i _i' ol .
and covariance —(1 — L) fori < j.

Proof. The Brownian bnidge B(t),0 <t < 1, 1s a Gaussian process with FB(t) =0
and Cov(B(s), B(t)) = s(1 —t) for s < t. Thus, the finite dimensional vector B=
(B(ﬁ:}, B(%). . B(ﬂ)) has a multivariate normal distribution with EB( ﬁ) = () for
all i and Cm'(B(#J B(L )) = %'('l — %) for i < 7.

We next turn to the vector X = (X|( L) X(2),.... X(Z)) formed from a standardized
time series. X has a multivariate normal distribution because we can write X = AY
where Y is the vector of 1.1.d. normal data (Y;,Ys,....,Y) and A 1s a deterministic
matrix formulated to yield (3). By inspection of (3), E Y(l) = (. Thus to complete

the proof, we must show that Cov(X (L), X( r',lt)) =1(1- —) for i < j as follows:
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Because the Y; are 1.1.d. normal, this simplifies to
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3.Cumulative Mean Intervals

In this section we formulate cumulative mean
intervals and derive the probability that the
cumulative sample mean oof a performance
mmeasure stays below its long-term mean, with
tolerance &, after & samples, when the data are 1.1.d.
normal. We start with some value £ > 0 so that there
is at least one sample collected to estimate the
sample mean We let § be the prespecified allowed
deviation above the long-term mean, which will
have implications in quality control applications.

by the data, 17, for j = k. _.m stays within [-o, I
+{]. and define the probability CMI as in (2).

Given an initial sample size k. we evaluate
the probability that the cumulative sample mean
stays below g, with allowed folerance &. Using (3),
we rewrite CMI in terms of the standardized time
series X{f) and a Brownian bridge B(f) when jis
an integer within &= 7= m:

First, we will use the long-term average as collected
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Proposition 1 allows us to move from (4) to (5) and to move from (5) to (6), we first
set t = j/m to standardize time to lie in [0,1]. The lower bound follows because in (6)
we evaluate the probabilty that the Brownian bridge stays within the bounds over all
continuous values of t € [% 1], whereas in (5) we consider only a finite set of discrete

points j/m such that k < j < m where j is restricted to the set of integer values.

Boundry crossing properties of Brownian bridges exists that will allow us to compute
(6) exactly. The probability that a Brownian bridge ever leaves two symmetric linear
bounds that have non-zero intercepts at t = 0 is derived in [1].In our case, the slope
of these linear bounds is +4/m. Whereas the intercept at ¢ = 0 is zero, we start the
process at ¢ = k/m, which yields a non-zero intercept. In practice, an experiment
would require some nitial k samples to calculate some estimate of the sample mean.

We now present the following result.

Theorem 3.1. Under the assumption that the underlying data are i.i.d. normal, the
probability that the sample mean stays below its long-term mean Yy, with tolerance 8,

over the range j =k, ....,m has a lower bound

5 ;
P B(=)<dé——= ]| >CMI;(6,0,k,m),
() 7B <075 | 2 CMILGo.km)

k<j<m
where
CMIpL(6,0.k,m) =20 ———] — 1 (7)
oJ1—E
m
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The probability that the sample mean stays below p, with tolerance 4, for all j > k,

has a lower bound

i |
P(ﬂ =) ¥Yi—p< 5) > CMIL(8,0,k),

ji=k i=1

a

where
CMIL(6,0,k,m) =2 (M) -1

4.Proof of Theorem 3.1
We wish to compute the following one sided calculation of CM1:

CMIL(8,0,k,m) = P( () oB() < MH)

te[£.1]

We condition on the location of B(k/m), where BY'™ is a Brownian bridge process

that takes value z at time k/m:

CMI(8,0,k,m) = -/_;: P( n JB:J"m('t} < j—%-}—(i\/m.t)ﬁ" (1.0, gﬁ_r’l;”‘;[l—-;i—c;])dr

tejn,1— K|
(9)

The first probability can be evaluated using {'61 from 3], with a Brownian bridge
starting at r at time 0, ending at 0 at time 1 — =, and a linear boundary defined by

the intercept dk//m and slope 6,/m. Then (9) bec.cnmeb_

_ i e — )+ vl = ED\\ [ ek, K
CMIL(d, ok m) = j:m (l—erp( 2{1——1 z, 0.0 E“_;] dr
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s m m
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and (10} simphifies to fﬁ(—’*’—] and the terms inside the integral in (11) are:
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Substituting the various terms back mto (10)and (11) we have:
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To prove the second part of the theorem regarding  ~ FUNDING

the probability that the sample average stays below
A, with tolerance O, we can establish how the results
holds by taking the limit in m. The detailes are
outside the scope of this report and are further
discussed under [5].

5.CONCLUSION

In this article, we have developed the CMI as a
measure of reliability to calculate the probability that
the cumulative sample mean stays below its long-term
sample mean Y m, with allowed tolerance 4, after an
initial sample size k. We rely on properties of
standardized time series to perform this calculation.
This measure can be used as an alternative to confidence
intervals to evaluate the mean performance over time of
a system. Additionally, it can be used as quality control
measure to estimate the probability that the sample
mean will go above a given control limit. Parallel work
develops the two-sided case, with fewer restrictions on
the data, and allows for further applications.
Multidimensional applications have been developed
based on the results derived under [2].
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